NVIDIA/Eigensolver_gpu

Name: Eigensolver_gpu

Owner: NVIDIA Corporation

Description: GPU Eigensolver for symmetric/hermitian matrices.

Created: 2017-05-26 22:04:44.0

Updated: 2018-02-27 11:07:08.0

Pushed: 2018-02-21 23:14:45.0

Homepage:

Size: 57

Language: Fortran

GitHub Committers

UserMost Recent Commit# Commits

Other Committers

UserEmailMost Recent Commit# Commits

README

Eigensolver_gpu

GPU Eigensolver for Quantum ESPRESSO package

This library implements a generalized eigensolver for symmetric/hermetian-definite eigenproblems with functionality similar to the DSYGVD/X or ZHEGVD/X functions available within LAPACK/MAGMA. This solver has less dependencies on CPU computation than comparable implementations within MAGMA, which may be of benefit to systems with limited CPU resources or to users without access to high-performing CPU LAPACK libraries.

This implementation can be considered as a “proof of concept” and has been written to target the Quantum ESPRESSO code. As such, this implementation is built only to handle one problem configuration of DSYGVD/X or ZHEGVD/X. Specifically, this solver computes eigenvalues and associated eigenvectors over a specified integer range for a symmetric/hermetian-definite eigenproblem in the following form:

A * x = lambda * B * x

where A and B are symmetric/hermetian-matrices and B is positive definite. The solver expects the upper-triangular parts of the input A and B arguments to be populated. This configuration corresponds to calling DSYGVX/ZHEGVX within LAPACK with the configuration arguments ITYPE = 1, JOBZ = 'V', RANGE = 'I', and UPLO = 'U'.

See comments within dsygvdx_gpu.F90 or zhegvdx_gpu.F90 for specific details on usage.

For additional information about the solver with some performance results, see presentation at the following link: (will be added once available publically on the GTC On-Demand website)

Building

An example of using this solver in a program can be found in the test_driver subdirectory. This program does a little performance testing and validation against existing functionality in a linked CPU LAPACK library, cuSOLVER, and MAGMA (if available).

License

This code is released under an MIT license which can be found in LICENSE.


This work is supported by the National Institutes of Health's National Center for Advancing Translational Sciences, Grant Number U24TR002306. This work is solely the responsibility of the creators and does not necessarily represent the official views of the National Institutes of Health.